0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAlthough the performance of naturally ventilation double-skin facade (NVDSF) assisted by solar radiation has been widely demonstrated for building energy saving, there are still several unsolved issues towards its application regarding the user space's side and its air quality. This study focuses on two aspects through validated CFD simulations: firstly, a theoretical model is calibrated for the use of an NVDSF connected to a room, with its validity examined by different solar intensities and applicable scenarios clarified; secondly, the age of air and ventilation efficiency under each scenario are evaluated. Results reveal the impacts due to air supply vent sizes, installation heights and aspect ratios, identify discounts in ventilation rates up to 14.8%, 15.3% and 2.9%, respectively. With a fixed air supply vent, different NVDSFs locations deliver almost identical natural ventilation rates (no more than 1.7% differences between cases), but significantly different indoor air quality – the difference in ventilation efficiencies can be up to 18%. An NVDSF located furthest to the air supply vent delivers the best indoor airflow distribution, with more fresh air coverage across the room and reduced bad circulation. The solar irradiation's (I) impact on natural ventilation rate (V) has been identified as V = 0.004 I 0.33 (new theoretical model) and V = 0.002 I 0.42 (CFD), which shows a good agreement with an average discrepancy of 6% for solar intensities 100–1000W/ m 2 . This study highlights the importance of evaluating indoor air quality in addition to the ventilation rates for an NVDSF with a room, and provides a more accurate theoretical model for transition seasons' ventilation that can reflect impacts from solar intensities to assist in future strategy-making for mixed-mode operations in buildings.
Yao Tao, Yihuan Yan, Xiang Fang, Haihua Zhang, Jiyuan Tu, Long Shi (2022). Solar-assisted naturally ventilated double skin façade for buildings: Room impacts and indoor air quality. Building and Environment, 216, pp. 109002-109002, DOI: 10.1016/j.buildenv.2022.109002.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Building and Environment
DOI
10.1016/j.buildenv.2022.109002
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access