RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China

0 Datasets

0 Files

English
2020
Forest Ecosystems
Vol 7 (1)
DOI: 10.1186/s40663-020-00242-3

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Chen Chan
Xi Fang
Wenhua Xiang
+3 more

Abstract

Background Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about the synergistic influence of soil physicochemical properties and vegetation features on vegetation restoration. The aim of this study was to investigate the co-evolution of soil physicochemical properties and vegetation features in the process of vegetation restoration, and to distinguish the primary and secondary relationships between soil and vegetation in their collaborative effects on promoting vegetation restoration in a subtropical area of China. Methods Soil samples were collected to 40 cm in four distinct plant communities along a restoration gradient from herb (4–5 years), to shrub (11–12 years), to Pinus massoniana coniferous and broadleaved mixed forest (45–46 years), and to evergreen broadleaved forest (old growth forest). Measurements were taken of the soil physicochemical properties and Shannon–Wiener index (SD), diameter at breast height (DBH), height ( H ), and biomass. Principal component analysis, linear function analysis, and variation partitioning analysis were then performed to prioritize the relative importance of the leading factors affecting vegetation restoration. Results Soil physicochemical properties and vegetation features showed a significant trend of improvement across the vegetation restoration gradient, reflected mainly in the high response rates of soil organic carbon (SOC) (140.76%), total nitrogen (TN) (222.48%), total phosphorus (TP) (59.54%), alkaline hydrolysis nitrogen (AN) (544.65%), available phosphorus (AP) (53.28%), species diversity (86.3%), biomass (2906.52%), DBH (128.11%), and H (596.97%). The soil properties (pH, SOC, TN, AN, and TP) and vegetation features (biomass, DBH, and H ) had a clear co-evolutionary relationship over the course of restoration. The synergistic interaction between soil properties and vegetation features had the greatest effect on biomass (55.55%–72.37%), and the soil properties contributed secondarily (3.30%–31.44%). The main impact factors of biomass varied with the restoration periods. Conclusions In the process of vegetation restoration, soil and vegetation promoted each other. Vegetation restoration was the cumulative result of changes in soil fertility and vegetation features.

How to cite this publication

Chen Chan, Xi Fang, Wenhua Xiang, Pifeng Lei, Shuai Ouyang, Yakov Kuzyakov (2020). Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China. Forest Ecosystems, 7(1), DOI: 10.1186/s40663-020-00242-3.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Forest Ecosystems

DOI

10.1186/s40663-020-00242-3

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access