0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil organic carbon (SOC) has various pools with different stabilization mechanisms. It is unclear how these SOC pools respond to various mineral and organic amendments depending on a large climate-soil gradient. Here, we studied in three zonal soils: Ferralic Cambisol (subtropic), Calcaric Cambisol (warm-temperate) and Luvic Phaeozem (mid-temperate) under 23-year mineral, straw and manure amendments. Six SOC sub-pools were isolated: unprotected, physically, chemically, biochemically, physico-chemically and physico-biochemically protected pools. Compared to initial level, SOC and most sub-pools increased in the three soils under manure application ( p < 0.05), but little under straw and mineral amendments. The Luvic Phaeozems had much higher sequestration efficiencies of bulk SOC (27%) and its five sub-pools (5–7%) more than the Calcaric Cambisol (9%, 1–2%) and Ferralic Cambisol (9%, 0.5–1%). In contrast, Ferralic Cambisol had highest sequestration efficiency of unprotected pool (7%). The Calcaric Cambisol had divergent patterns of the six SOC pools compared with Luvic Phaeozems and Ferralic Cambisol, due to the low clay content. With the build-up of bulk SOC, the building-up abilities of non-protected, physically-, chemically- and biochemically-protected pools depended on soil type, while the building-up abilities of physico-chemically- and physico-biochemically-protected pools were convergent (12–19%) among soils. In conclusion, the Luvic Phaeozems had much higher build-up ability of bulk SOC and most sub-pools than the other two soils. With the build-up of SOC, the physico-chemically- and physico-biochemically-protected pools (most stable) had convergent response rates among soils, while the other pools had divergent response rates. Graphical Abstract
Yiping Liu, Zhang Li-min, Yilai Lou, Ning Hu, Zhongfang Li, Huimin Zhang, Ping Zhu, Dongchu Li, Hong‐Jun Gao, Shuiqing Zhang, Shunbao Lu, Ranjan Bhattacharyya, Yakov Kuzyakov, Yidong Wang (2024). Soil organic carbon pools under long-term mineral and organic amendments: a multisite study. Carbon Research, 3(1), DOI: 10.1007/s44246-024-00121-4.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
Carbon Research
DOI
10.1007/s44246-024-00121-4
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access