0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFloodplain soils provide an important link in the land-ocean aquatic continuum. Understanding microbial activity in these soils, which can be many metres deep, is a key component in our understanding of the role of floodplains in the carbon (C) cycle. We sampled the mineral soil profile to 3 m depth from two floodplain sites under long-term pasture adjacent to the river Culm in SW England, UK. Soil chemistry (C, nitrogen (N), phosphorus (P), soil microbial biomass (SMB), moisture content) and soil solution (pH, dissolved organic C (DOC) and N, nitrate, ammonium, water extractable P) were analysed over the 3 m depth in 6 increments: 0.0–0.2, 0.2–0.7, 1.0–1.5, 1.5–2.0, 2.0–2.5, and 2.5–3.0 m. 14C-glucose was added to the soil and the evolution of 14CO2 measured during a 29 d incubation. From soil properties and 14C-glucose mineralisation, three depth groups emerged, with distinct turnover times extrapolated from initial k1 mineralisation rate constants of 2 h (topsoil 0.0–0.2 m), 4 h (subsoil 0.2–0.7 m), and 11 h (deep subsoil 1.0–3.0 m). However, when normalised by SMB, k1 rate constants had no significant differences across all depths. Deep subsoil had a 2 h lag to reach maximal 14CO2 production whereas the topsoil and subsoil (0.2–0.7 m) achieved maximum mineralisation rates immediately. SMB decreased with depth, but only to half of the surface population, with the proportion of SMB-C to total C increasing from 1% in topsoil to 15% in deep subsoil (>1.0 m). The relatively large SMB concentration and rapid mineralisation of 14C-glucose suggests that DOC turnover in deep soil horizons in floodplains is limited by access to biologically available C and not the size of the microbial population.
Elizabeth L. Cressey, Jennifer A. J. Dungait, Davey L Jones, Andrew Nicholas, Timothy A. Quine (2018). Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition. Soil Biology and Biochemistry, 122, pp. 60-70, DOI: 10.1016/j.soilbio.2018.04.001.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2018.04.001
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access