0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTropical regions, such as Sumatra, experiencing extensive transformation of natural ecosystems, are close to complete exhaustion of available land. Agroecosystems strongly modify water and nutrient cycles, leading to losses of soil fertility, C sequestration and biodiversity. Although large companies are the main drivers of deforestation and plantation establishment, smallholders account for 40% of the oil palm and the majority of the rubber production in Indonesia. Here, we assess the extent and mechanisms of soil degradation under smallholder oil palm and rubber plantations in a context of land scarcity. The topsoil properties (C and N contents, C stocks, C/N ratio, bulk density) in 207 oil palm and rubber plantations in the Jambi province of Sumatra were determined beside trees, inside rows and interrows. Soils under oil palms were on average more degraded than under rubber, showing lower C content and stocks, lower N and higher bulk density. While soil properties were homogenous under rubber, two opposite trends were observed under oil palm plantations: the majority of soils had C content <2.2%, but about one fifth of the plantations had >9% C. This resulted from the establishment of oil palms under conditions of land scarcity. Because the oil palm boom started when rubber was already well-established, oil palms were frequently planted in marginal areas, such as peatlands or riparian areas (high C) or soils degraded by previous use (low C). The management of oil palms led to subsequent soil degradation, especially in interrows: C content decreased and bulk density increased in older oil palm plantations. This was not observed in rubber plantations because of a C input from leaf litter spread homogeneously all over the plantation, higher ground cover and a limited use of motorized vehicles. Considering that 10% of soils under oil palms had very low C content (<1%), we conclude that intensive cultivation can lead to intensive soil degradation and expect future degradation of soils under young oil palms. This challenges the sustainability of agricultural intensification in Sumatra. Because Sumatra is a pioneer of tropical land-use change, this should be regarded as potential threats that other tropical regions may face in future.
Thomas Guillaume, Anna Mareike Holtkamp, Damris Muhammad, Bernhard Brümmer, Yakov Kuzyakov (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture Ecosystems & Environment, 232, pp. 110-118, DOI: 10.1016/j.agee.2016.07.002.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Agriculture Ecosystems & Environment
DOI
10.1016/j.agee.2016.07.002
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access