0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLabile carbon (C) inputs strongly alter soil organic matter (SOM) turnover by priming, thus affecting soil C dynamics and soil fertility in the long term. The frequency of labile C inputs is expected to affect the intensity of priming effect. We evaluated the effects of single versus repeated additions of 13C-labeled glucose (with added 13C corresponding to 2% of soil organic C content) to five soils with increasing fertility level on the intensity of priming effect and soil C balance. Repeated glucose addition induced 61–108% greater C mineralization due to positive priming than the single addition in all soils. The intensity of priming effect declined with soil fertility level and mineral nitrogen (N) content, but increased with higher activities of N-acquisition enzymes (N-acetyl-glucosaminidase and leucine amino peptidase). Consequently, the decrease in N availability strongly increased the intensity of priming effect presumably by enhancing microbial N mining from SOM. Considering the C balance between SOM losses due to priming and glucose-C retention, glucose addition was responsible for net C losses in the low and moderate fertility soils (−14.0 to −0.30 mg C g−1 SOC after 14 weeks) but led to C gains in the high fertility soils (+0.44 to +4.36 mg C g−1 SOC). Greater retention of glucose-C was attributed to higher N availability and more intensive microbial growth, thus supporting microbial necromass formation and soil C sequestration. Compared to single addition, repeated glucose addition caused larger net C losses or lower C gains due to stronger SOM priming. In conclusion, the frequency of substrate addition and soil fertility are important regulators of SOM priming and the C balance. This knowledge should be informative to interpret soil C dynamics in response to labile C inputs in agroecosystems.
Lei Wu, Hu Xu, Qiong Xiao, Yaping Huang, Memon Muhammad Suleman, Ping Zhu, Yakov Kuzyakov, Xingliang Xu, Minggang Xu, Wenju Zhang (2020). Soil carbon balance by priming differs with single versus repeated addition of glucose and soil fertility level. Soil Biology and Biochemistry, 148, pp. 107913-107913, DOI: 10.1016/j.soilbio.2020.107913.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2020.107913
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access