0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe Coronavirus pandemic has presented multifaceted challenges in urban emotional well-being and mental health management. Our study presents a spatio-temporal sentiment mining (STSM) framework to address these challenges, focusing on the space-time geography and environmental psychology. This framework analyzes the distribution and trends of 6 categories of public sentiments in Shanghai during the COVID-19 crisis, considering the potential urban spatial influencing factors. The research specifically draws on social media data temporally coinciding with the spread of COVID-19 and the pre-trained language model RoBERTa-wwm-ext to classify public sentiment, in order to characterize the distribution and trends of dominant urban sentiment under the influence of epidemic at different phases. The interactions between urban geospatial features and sentiments are further modelled and explained using LightGBM algorithm and SHapley Additive exPlanations (SHAP) technique. The experimental findings reveal the subtle yet dynamic impact of the urban environment on the long-term spatial variation and trends of public sentiment under the epidemic, with green spaces and socio-economic status emerging as significant factors. Regions with higher permanent population consumption demonstrated more positive sentiments, underscoring the significance of socio-economic factors in urban planning and public health policy. This research offers the most extensive analysis to date on the influence of urban characteristics on public sentiment during Shanghai's epidemic life cycle also lays the groundwork for applying the STSM framework in future crises beyond COVID-19.
Siqi Wang, Chao Liang, Yunfan Gao, Yu Ye, Jingyu Qiu, Chuang Tao, Haofen Wang (2024). Social media insights into spatio-temporal emotional responses to COVID-19 crisis. Health & Place, 85, pp. 103174-103174, DOI: 10.1016/j.healthplace.2024.103174.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Health & Place
DOI
10.1016/j.healthplace.2024.103174
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access