0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA method of sizing stand‐alone photovoltaic systems regarding the reliability to satisfy the load demand, economy of components, and discharge depth exploited by the batteries is presented in this work. Solar radiation data simulated by an appropriate stochastic time series model, and not actual measurements, are used in the sizing procedure. This offers two distinct advantages: (a) sizing can be performed even for locations where no actual data exist, (b) the influence of the variation of the statistical parameters of solar radiation in sizing can be examined. The method has been applied and tested for several representative locations all over Greece for which monthly daily average values of solar radiation are given by ELOT (Hellenic Organization of Standardization).
A. Balouktsis, Thodoris Karapantsios, Aristomenis Antoniadis, Dimitris Paschaloudis, A. Bezergiannidou, N. Bilalis (2006). Sizing stand-alone photovoltaic systems. , 2006(1), DOI: https://doi.org/10.1155/ijp/2006/73650.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1155/ijp/2006/73650
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access