0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis . Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown. Using a methylation-sensitive PCR (CHOP-PCR)-based forward genetic screen for Arabidopsis DNA hypermethylation mutants, we identified the SUMO E3 ligase SIZ1 as a critical regulator of active DNA demethylation. Dysfunction of SIZ1 leads to hyper-methylation at approximately one thousand genomic regions. SIZ1 physically interacts with ROS1 and mediates the SUMOylation of ROS1. The SUMOylation of ROS1 is reduced in siz1 mutant plants. Compared to that in wild type plants, the protein level of ROS1 is significantly decreased, even though there is an increased level of ROS1 transcripts in siz1 mutant plants. Our results suggest that SIZ1 positively regulates active DNA demethylation by promoting the stability of ROS1 protein through SUMOylation. Short Summary The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) is indispensable for proper DNA methylation landscape in Arabidopsis . Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown. Here, we show that SIZ1-mediated SUMOylation of ROS1 enhances its stability and positively regulates active DNA demethylation.
Xiangfeng Kong, Yechun Hong, Y. Y. Hsu, Huan Huang, Xue Liu, Zhe Song, Jian Kang Zhu (2020). SIZ1-mediated SUMOylation of ROS1 Enhances Its Stability and Positively Regulates Active DNA Demethylation in<i>Arabidopsis</i>. , DOI: https://doi.org/10.1101/2020.03.05.978999.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2020
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/2020.03.05.978999
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access