0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDelay alignment modulation (DAM) is a promising technology to achieve ISI-free wideband communication, by leveraging delay compensation and path-based beamforming, rather than the conventional channel equalization or multi-carrier transmission. In particular, when there exist a few strong time-dispersive channel paths, DAM can effectively align different propagation delays and achieve their constructive superposition, thus especially appealing for intelligent reflecting surfaces (IRSs)-aided communications with controllable multi-paths. In this paper, we apply DAM to multi-IRS aided wideband communication and study its practical design and achievable performance. We first provide an asymptotic analysis showing that when the number of base station (BS) antennas is much larger than that of IRSs, an ISI-free channel can be established with appropriate delay pre-compensation and the simple path-based MRT beamforming. We then consider the general system setup and study the problem of joint path-based beamforming and phase shifts design for DAM transmission, by considering the three classical beamforming techniques on a per-path basis, namely the low-complexity path-based MRT beamforming, the path-based ZF beamforming for ISI-free DAM communication, and the optimal path-based MMSE beamforming. As a comparison, OFDM-based multi-IRS aided communication is considered. Simulation results demonstrate that DAM outperforms OFDM in terms of spectral efficiency, BER, and PAPR.
Haiquan Lu, Yong Zeng, Shi Jin, Rui Zhang (2022). Single-Carrier Delay Alignment Modulation for Multi-IRS Aided Communication. arXiv (Cornell University), DOI: 10.48550/arxiv.2210.10241.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2210.10241
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access