RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Simulation of Indentation Fracture in Crystalline Materials Using Mesoscale Self-Assembly

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2002

Simulation of Indentation Fracture in Crystalline Materials Using Mesoscale Self-Assembly

0 Datasets

0 Files

English
2002
Journal of the American Chemical Society
Vol 124 (33)
DOI: 10.1021/ja020577b

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John W. Hutchinson
John W. Hutchinson

Harvard University

Verified
V.R. Thalladi
Alexander Schwartz
Jennifer N. Phend
+2 more

Abstract

A new physical model based on mesoscale self-assembly is developed to simulate indentation fracture in crystalline materials. Millimeter-scale hexagonal objects exhibiting atom-like potential functions were designed and allowed to self-assemble into two-dimensional (2D) aggregates at the interface between water and perfluorodecalin. Indentation experiments were performed on these aggregates, and the stresses and strains involved in these processes were evaluated. The stress field in the aggregates was analyzed theoretically using the 2D elastic Hertz solution. Comparison of the experimental results with theoretical analysis revealed that fracture develops in regions subjected to high shear stress and some, albeit low, tensile stress. The potential for the broader application of the model is illustrated using indentation of assemblies with point defects and adatoms introduced at predetermined locations, and using a two-phase aggregate simulating a compliant film on a stiff substrate.

How to cite this publication

V.R. Thalladi, Alexander Schwartz, Jennifer N. Phend, John W. Hutchinson, George M. Whitesides (2002). Simulation of Indentation Fracture in Crystalline Materials Using Mesoscale Self-Assembly. Journal of the American Chemical Society, 124(33), pp. 9912-9917, DOI: 10.1021/ja020577b.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2002

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Journal of the American Chemical Society

DOI

10.1021/ja020577b

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access