0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Based on the coupling effects of contact electrification and electrostatic induction, a triboelectric nanogenerator (TENG) can convert mechanical energy into electric power, which is at the cutting edge of alternative energy technology. Although a considerable number of TENGs with different configurations have been designed, some of them however, which only depend on the electrostatic induction effect have not received enough attention. Here, a non‐contact TENG model consists of copper rings and charged dielectric sphere is presented, which is aimed at exploring the working process of TENGs caused by electrostatic induction. Two classical models, including vertical and horizontal double copper rings models are also proposed. Relevant advanced and accurate models of TENGs have been established through the finite element method. We anticipate that the constructed model and theoretical analysis are helpful for the design of non‐contact model TENGs with complicated geometric construction, and expand their applications in various fields. image
Jing You, Jiajia Shao, Yahua He, Xin Guo, Khay Wai See, Zhong Lin Wang, Xiaolin Wang (2023). Simulation model of a non‐contact triboelectric nanogenerator based on electrostatic induction. , 5(10), DOI: https://doi.org/10.1002/eom2.12392.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/eom2.12392
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access