0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessObjectives This study examined the value of endothelial shear stress (ESS) estimated in 3-dimensional quantitative coronary angiography (3D-QCA) models in detecting plaques that are likely to progress and cause events. Background Cumulative evidence has shown that plaque characteristics and ESS derived from intravascular ultrasound (IVUS)−based reconstructions enable prediction of lesions that will cause cardiovascular events. However, the prognostic value of ESS estimated by 3D-QCA in nonflow limiting lesions is yet unclear. Methods This study analyzed baseline virtual histology (VH)-IVUS and angiographic data from 28 lipid-rich lesions (i.e., fibroatheromas) that caused major adverse cardiovascular events or required revascularization (MACE-R) at 5-year follow-up and 119 lipid-rich plaques from a control group that remained quiescent. The segments studied by VH-IVUS at baseline were reconstructed using 3D-QCA software. In the obtained geometries, blood flow simulation was performed, and the pressure gradient across the lipid-rich plaque and the mean ESS values in 3-mm segments were estimated. The additive value of these hemodynamic indexes in predicting MACE-R beyond plaque characteristics was examined. Results MACE-R lesions were longer, had smaller minimum lumen area, increased plaque burden (PB), were exposed to higher ESS, and exhibited a higher pressure gradient. In multivariable analysis, PB (hazard ratio: 1.08; p = 0.004) and the maximum 3-mm ESS value (hazard ratio: 1.11; p = 0.001) were independent predictors of MACE-R. Lesions exposed to high ESS (>4.95 Pa) with a high-risk anatomy (minimal lumen area <4 mm2 and PB >70%) had a higher MACE-R rate (53.8%) than those with a low-risk anatomy exposed to high ESS (31.6%) or those exposed to low ESS who had high- (20.0%) or low-risk anatomy (7.1%; p < 0.001). Conclusions In the present study, 3D-QCA-derived local hemodynamic variables provided useful prognostic information, and, in combination with lesion anatomy, enabled more accurate identification of MACE-R lesions.
Christos V. Bourantas, Thomas Zanchin, Ryo Torii, Patrick W. Serruys, Alexios Karagiannis, Anantharaman Ramasamy, Hannah Safi, Ahmet U. Coskun, Gerhard Koning, Yoshinobu Onuma, Christian Zanchin, Rob Krams, Anthony Mathur, Andreas Baumbach, Gary S. Mintz, Stephan Windecker, Alexandra Lansky, Akiko Maehara, Peter H. Stone, Lorenz Räber, Gregg W. Stone (2020). Shear Stress Estimated by Quantitative Coronary Angiography Predicts Plaques Prone to Progress and Cause Events. JACC. Cardiovascular imaging, 13(10), pp. 2206-2219, DOI: 10.1016/j.jcmg.2020.02.028.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
21
Datasets
0
Total Files
0
Language
English
Journal
JACC. Cardiovascular imaging
DOI
10.1016/j.jcmg.2020.02.028
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access