RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Shape-Controlled Synthesis of Palladium Nanocrystals: A Mechanistic Understanding of the Evolution from Octahedrons to Tetrahedrons

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2013

Shape-Controlled Synthesis of Palladium Nanocrystals: A Mechanistic Understanding of the Evolution from Octahedrons to Tetrahedrons

0 Datasets

0 Files

en
2013
Vol 13 (5)
Vol. 13
DOI: 10.1021/nl400893p

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Yi Wang
Shuifen Xie
Jingyue Liu
+3 more

Abstract

Palladium octahedrons and tetrahedrons enclosed by eight and four {111} facets have been synthesized from cuboctahedral Pd seeds by using Na2PdCl4 and Pd(acac)2, respectively, as the precursors. Our mechanistic studies indicate that the cuboctahedral seeds were directed to grow into octahedrons, truncated tetrahedrons, and then tetrahedrons when Pd(acac)2 was used as a precursor. In contrast, the same batch of seeds only evolved into octahedrons with increasing sizes when the precursor was switched to Na2PdCl4. The difference in growth pattern could be attributed to the different reduction rates of these two precursors. The fast reduction of Pd(acac)2 led to a quick drop in concentration for the precursor in the very early stage of a synthesis, forcing the growth into a kinetically controlled mode. In comparison, the slow reduction of Na2PdCl4 could maintain this precursor at a relatively high concentration to ensure thermodynamically controlled growth. This work not only advances our understanding of the growth mechanism of tetrahedrons but also offers a new approach to controlling the shape of metal nanocrystals.

How to cite this publication

Yi Wang, Shuifen Xie, Jingyue Liu, Jinho Park, Cheng Zhi Huang, Younan Xia (2013). Shape-Controlled Synthesis of Palladium Nanocrystals: A Mechanistic Understanding of the Evolution from Octahedrons to Tetrahedrons. , 13(5), DOI: https://doi.org/10.1021/nl400893p.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/nl400893p

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access