0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSpatio-temporal image fusion methods have become a popular means to produce remotely sensed data sets that have both fine spatial and temporal resolution. Accurate prediction of reflectance change is difficult, especially when the change is caused by both phenological change and land cover class changes. Although several spatio-temporal fusion methods such as the Flexible Spatiotemporal DAta Fusion (FSDAF) directly derive land cover phenological change information (such as endmember change) at different dates, the direct derivation of land cover class change information is challenging. In this paper, an enhanced FSDAF that incorporates sub-pixel class fraction change information (SFSDAF) is proposed. By directly deriving the sub-pixel land cover class fraction change information the proposed method allows accurate prediction even for heterogeneous regions that undergo a land cover class change. In particular, SFSDAF directly derives fine spatial resolution endmember change and class fraction change at the date of the observed image pair and the date of prediction, which can help identify image reflectance change resulting from different sources. SFSDAF predicts a fine resolution image at the time of acquisition of coarse resolution images using only one prior coarse and fine resolution image pair, and accommodates variations in reflectance due to both natural fluctuations in class spectral response (e.g. due to phenology) and land cover class change. The method is illustrated using degraded and real images and compared against three established spatio-temporal methods. The results show that the SFSDAF produced the least blurred images and the most accurate predictions of fine resolution reflectance values, especially for regions of heterogeneous landscape and regions that undergo some land cover class change. Consequently, the SFSDAF has considerable potential in monitoring Earth surface dynamics.
Xiaodong Li, Giles Foody, Doreen S. Boyd, Yong Ge, Yihang Zhang, Yun Du, Feng Ling (2019). SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sensing of Environment, 237, pp. 111537-111537, DOI: 10.1016/j.rse.2019.111537.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Remote Sensing of Environment
DOI
10.1016/j.rse.2019.111537
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access