0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground. Hyperlactatemia is a strong predictor of mortality in severe falciparum malaria. Sequestered parasitized erythrocytes and reduced uninfected red blood cell deformability (RCD) compromise microcirculatory flow, leading to anaerobic glycolysis. Methods. In a cohort of patients with falciparum malaria hospitalized in Chittagong, Bangladesh, bulk RCD was measured using a laser diffraction technique, and parasite biomass was estimated from plasma concentrations of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). A multiple linear regression model was constructed to examine their associations with plasma lactate concentrations. Results. A total of 286 patients with falciparum malaria were studied, of whom 224 had severe malaria, and 70 died. Hyperlactatemia (lactate level, ≥4 mmol/L) was present in 111 cases. RCD at shear stresses of 1.7 Pa and 30 Pa was reduced significantly in patients who died, compared with survivors, individuals with uncomplicated malaria, or healthy individuals (P < .05, for all comparisons). Multiple linear regression analysis showed that the plasma PfHRP2 level, parasitemia level, total bilirubin level, and RCD at a shear stress of 1.7 Pa were each independently correlated with plasma lactate concentrations (n = 278; R2 = 0.35). Conclusions. Sequestration of parasitized red blood cells and reduced RCD both contribute to decreased microcirculatory flow in severe disease.
Haruhiko Ishioka, Aniruddha Ghose, Prakaykaew Charunwatthana, Richard J. Maude, Katherine Plewes, Hugh W. F. Kingston, Benjamas Intharabut, Charlie Woodrow, Kesinee Chotivanich, Abdullah Abu Sayeed, Mahtab Uddin Hasan, Nicholas Day, Abul Faiz, Sir Nicholas White, Amir Hossain, Arjen M. Dondorp (2015). Sequestration and Red Cell Deformability as Determinants of Hyperlactatemia in Falciparum Malaria. The Journal of Infectious Diseases, 213(5), pp. 788-793, DOI: 10.1093/infdis/jiv502.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
16
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Infectious Diseases
DOI
10.1093/infdis/jiv502
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access