0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The force distribution in the oceans, which cover 71% of the Earth's surface, is relatively unknown compared to the cosmos between Earth and 13.8 billion light years away due to the lack of sensors that can operate over long periods in a harsh underwater environments. Herein, a self‐powered underwater force sensor (SUFS) is reported based on a T‐shaped triboelectric nanogenerator (T‐TENG) for simultaneous detection of normal and tangential forces of finger touching as well as water flow exerted on the underwater objects. The SUFS based on two coupled TENGs can detect normal and tangential forces working in different TENG modes. The T‐shaped structure and atmosphere of the airbag inside the SUFS are optimized for improved electrical outputs. Furthermore, simple method suitable for mass production is also proposed to achieve a superhydrophobic surface with an underwater anti‐interference function. The SUFS can effectively monitor the angle α , force, and frequency of the kayak paddle and finger touching, and is promising for self‐powered intelligent motion sensing, soft robotics, human–computer interaction, and ocean monitoring in general.
Yu Hou, Xuanli Dong, Ding Li, Dazheng Shi, Wei Tang, Zhong Lin Wang (2023). Self‐Powered Underwater Force Sensor Based on a T‐Shaped Triboelectric Nanogenerator for Simultaneous Detection of Normal and Tangential Forces. , 33(52), DOI: https://doi.org/10.1002/adfm.202305719.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.202305719
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access