0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Engineered nanozymes have been developed to catalyze the production of reactive oxygen species (ROS) for cancer therapy, but currently, the ROS generation efficiency is still far from optimistic. In this study, a human self‐driven electrical stimulation enhanced catalytic system based on wearable triboelectric nanogenerator (TENG) and fully π‐conjugated covalent organic framework nanocages (hCOF) for improving cancer therapy is created. The fully π‐conjugated hCOF nanocage with high electron mobility under the self‐generated electric field can not only rearrange the local electric field for optimizing energy utilization, but also facilitates the access of electrolytes to optimize the utilization of the electric field. With the self‐powered wearable TENG, the peroxidase‐like activity of hCOF increased by 2.44‐fold and has electricity‐responsive doxorubicin delivery capacity for enhancing the therapeutic outcomes. The high‐efficient self‐driven electrical stimulation enhanced nanocatalytic system provides a new optimized model for the catalytic energy supply of nanozymes.
Shuncheng Yao, Minjia Zheng, Shaobo Wang, Tian Huang, Zhuo Wang, Yunchao Zhao, Wei Yuan, Zhou Li, Zhong Lin Wang, Linlin Li (2022). Self‐driven Electrical Stimulation Promotes Cancer Catalytic Therapy Based on Fully Conjugated Covalent Organic Framework Nanocages. , 32(47), DOI: https://doi.org/10.1002/adfm.202209142.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.202209142
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access