0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study investigated the seasonality of acoustic backscatter intensities, exploring three habitats in the southwestern Baltic Sea: 1) a mussel-covered reef, 2) coarse sand and gravel, and 3) seagrass meadows. Backscatter information of different, partly calibrated frequencies (200, 400, 550, and 700 kHz) was collected in three seasons (May, August, and October). The acoustic data were supported by point samples and video profiles for grain size and benthic community analysis. Angular response curves helped to quantify the seasonal backscatter response of the different frequencies. The multifrequency and multiseasonal backscatter maps distinguish the three habitats and reveal variable seasonal differences in acoustic backscatter, but not all changes in the benthic community can be recognized in the acoustic data. 1) The high-backscatter response of the mussel-covered reef shows little seasonal differences and was frequency independent. 2) The ecologically valuable coarse sand and gravel areas show small-scale seasonal alterations in the sediment composition and morphology, mainly caused by changes in local hydrodynamics. Higher frequencies were found best suited to identify coarse sand and gravel. 3) Seagrass meadows seasonality is dominated by growth of seagrass blades, increasing the backscatter response compared to bare sand. The use of multiple frequencies is beneficial as the low frequency is sensitive to changes in the shallow subsurface and benthic features such as seagrass rhizomes, while the higher frequency highlights changes related to coarser sediment.
Inken Schulze, Mayya Gogina, Mischa Schönke, Michael L. Zettler, Peter Feldens (2022). Seasonal change of multifrequency backscatter in three Baltic Sea habitats. Frontiers in Remote Sensing, 3, DOI: 10.3389/frsen.2022.956994.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Frontiers in Remote Sensing
DOI
10.3389/frsen.2022.956994
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access