0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUniversity of Techology Sdyney
This work proposes two novel optimization algorithms called Salp Swarm Algorithm (SSA) and Multi-objective Salp Swarm Algorithm (MSSA) for solving optimization problems with single and multiple objectives. The main inspiration of SSA and MSSA is the swarming behaviour of salps when navigating and foraging in oceans. These two algorithms are tested on several mathematical optimization functions to observe and confirm their effective behaviours in finding the optimal solutions for optimization problems. The results on the mathematical functions show that the SSA algorithm is able to improve the initial random solutions effectively and converge towards the optimum. The results of MSSA show that this algorithm can approximate Pareto optimal solutions with high convergence and coverage. The paper also considers solving several challenging and computationally expensive engineering design problems (e.g. airfoil design and marine propeller design) using SSA and MSSA. The results of the real case studies demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and unknown search spaces.
Seyedali Mirjalili, Amir Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hossam Faris, Seyed Mohammad Mirjalili (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, pp. 163-191, DOI: 10.1016/j.advengsoft.2017.07.002.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Advances in Engineering Software
DOI
10.1016/j.advengsoft.2017.07.002
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access