RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Root hairs increase rhizosphere extension and carbon input to soil

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Root hairs increase rhizosphere extension and carbon input to soil

0 Datasets

0 Files

English
2017
Annals of Botany
Vol 121 (1)
DOI: 10.1093/aob/mcx127

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Maire Holz
Mohsen Zarebanadkouki
Yakov Kuzyakov
+2 more

Abstract

Although it is commonly accepted that root exudation enhances plant-microbial interactions in the rhizosphere, experimental data on the spatial distribution of exudates are scarce. Our hypothesis was that root hairs exude organic substances to enlarge the rhizosphere farther from the root surface.Barley (Hordeum vulgare 'Pallas' - wild type) and its root-hairless mutant (brb) were grown in rhizoboxes and labelled with 14CO2. A filter paper was placed on the soil surface to capture, image and quantify root exudates.Plants with root hairs allocated more carbon (C) to roots (wild type: 13 %; brb: 8 % of assimilated 14C) and to rhizosheaths (wild type: 1.2 %; brb: 0.2 %), while hairless plants allocated more C to shoots (wild type: 65 %; brb: 75 %). Root hairs increased the radial rhizosphere extension three-fold, from 0.5 to 1.5 mm. Total exudation on filter paper was three times greater for wild type plants compared to the hairless mutant.Root hairs increase exudation and spatial rhizosphere extension, which probably enhance rhizosphere interactions and nutrient cycling in larger soil volumes. Root hairs may therefore be beneficial to plants under nutrient-limiting conditions. The greater C allocation below ground in the presence of root hairs may additionally foster C sequestration.

How to cite this publication

Maire Holz, Mohsen Zarebanadkouki, Yakov Kuzyakov, Johanna Pausch, Andrea Carminati (2017). Root hairs increase rhizosphere extension and carbon input to soil. Annals of Botany, 121(1), pp. 61-69, DOI: 10.1093/aob/mcx127.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Annals of Botany

DOI

10.1093/aob/mcx127

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access