0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHeavy metals contained in wastewater are one of the most serious pollutions in natural resources. A self‐powered electrochemical recovery system for collecting Cu ions in wastewater by incorporating a rolling friction enhanced freestanding triboelectric nanogenerator (RF‐TENG) is developed here. The RF‐TENG utilizes integrated cylindrical surfaces using the conjunction of rolling electrification and freestanding electrostatic induction, which shows outstanding output performance and ultrarobust stability. By using the kinetic energy of flowing water, a collection efficiency of up to 80% for Cu 2+ ions in wastewater has been achieved. Self‐powered electrochemical systems are one of the most promising applications of TENGs for independent and sustainable driving of electrochemical reactions without the need for any additional power supply. This research is a substantial advancement towards the practical applications of triboelectric nanogenerators and self‐powered electrochemical systems.
Min‐Hsin Yeh, Hengyu Guo, Long Lin, Zhen Wen, Zhaoling Li, Chenguo Hu, Zhong Lin Wang (2015). Rolling Friction Enhanced Free‐Standing Triboelectric Nanogenerators and their Applications in Self‐Powered Electrochemical Recovery Systems. , 26(7), DOI: https://doi.org/10.1002/adfm.201504396.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201504396
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access