0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDissolved organic nitrogen (DON) represents a significant pool of soluble N in many soils and freshwaters. Further, the low molecular weight (LMW) component of DON represents an important source of N for microorganisms and can also be utilized directly by some plants. Our purpose was to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant block in soil N supply in three agricultural grassland soils. The results indicate that the conversion of insoluble organic N to LMW-DON and not LMW-DON to NH4 + or NH4 + to NO3 − represents a major constraint to N supply. We hypothesize that there are two distinct DON pools in soil. The first pool comprises mainly free amino acids and proteins and is turned over very rapidly by the microbial community, so it does not accumulate in soil. The second pool is a high molecular weight pool rich in humic substances, which turns over slowly and represents the major DON loss to freshwaters. The results also suggest that in NO3 − rich soils the uptake of LMW-DON by soil microorganisms may primarily provide them with C to fuel respiration, rather than to satisfy their internal N demand.
Davey L Jones, David Shannon, Daniel V. Murphy, J. F. FARRAR (2004). Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry, 36(5), pp. 749-756, DOI: 10.1016/j.soilbio.2004.01.003.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2004.01.003
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access