RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼55%

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2015

Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼55%

0 Datasets

0 Files

en
2015
Vol 9 (1)
Vol. 9
DOI: 10.1021/nn506673x

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Long Lin
Yannan Xie
Simiao Niu
+3 more

Abstract

In comparison to in-pane sliding friction, rolling friction not only is likely to consume less mechanical energy but also presents high robustness with minimized wearing of materials. In this work, we introduce a highly efficient approach for harvesting mechanical energy based on rolling electrification and electrostatic induction, aiming at improving the energy conversion efficiency and device durability. The rolling triboelectric nanogenerator is composed of multiple steel rods sandwiched by two fluorinated ethylene propylene (FEP) thin films. The rolling motion of the steel rods between the FEP thin films introduces triboelectric charges on both surfaces and leads to the change of potential difference between each pair of electrodes on back of the FEP layer, which drives the electrons to flow in the external load. As power generators, each pair of output terminals works independently and delivers an open-circuit voltage of 425 V, and a short-circuit current density of 5 mA/m(2). The two output terminals can also be integrated to achieve an overall power density of up to 1.6 W/m(2). The impacts of variable structural factors were investigated for optimization of the output performance, and other prototypes based on rolling balls were developed to accommodate different types of mechanical energy sources. Owing to the low frictional coefficient of the rolling motion, an instantaneous energy conversion efficiency of up to 55% was demonstrated and the high durability of the device was confirmed. This work presents a substantial advancement of the triboelectric nanogenerators toward large-scope energy harvesting and self-powered systems.

How to cite this publication

Long Lin, Yannan Xie, Simiao Niu, Sihong Wang, Po‐Kang Yang, Zhong Lin Wang (2015). Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼55%. , 9(1), DOI: https://doi.org/10.1021/nn506673x.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/nn506673x

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access