0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDNA methylation-dependent heterochromatin formation is a conserved mechanism of epigenetic silencing of transposons and other repeat elements in many higher eukaryotes. Genes adjacent to repetitive elements are often also subjected to this epigenetic silencing. Consequently, plants have evolved antisilencing mechanisms such as active DNA demethylation mediated by the REPRESSOR OF SILENCING 1 (ROS1) family of 5-methylcytosine DNA glycosylases to protect these genes from silencing. Some transposons and other repeat elements have found residence in the introns of genes. It is unclear how these intronic repeat elements-containing genes are regulated. We report here the identification of ANTI-SILENCING 1 (ASI1), a bromo-adjacent homology domain and RNA recognition motif-containing protein, from a forward genetic screen for cellular antisilencing factors in Arabidopsis thaliana. ASI1 is required to prevent promoter DNA hypermethylation and transcriptional silencing of some transgenes. Genome-wide DNA methylation analysis reveals that ASI1 has a similar role to that of the histone H3K9 demethylase INCREASE IN BONSAI METHYLATION 1 (IBM1) in preventing CHG methylation in the bodies of thousands of genes. We found that ASI1 is an RNA-binding protein and ensures the proper expression of IBM1 full-length transcript by associating with an intronic heterochromatic repeat element of IBM1. Through mRNA sequencing, we identified many genes containing intronic transposon elements that require ASI1 for proper expression. Our results suggest that ASI1 associates with intronic heterochromatin and binds the gene transcripts to promote their 3' distal polyadenylation. The study thus reveals a unique mechanism by which higher eukaryotes deal with the collateral effect of silencing intronic repeat elements.
Xingang Wang, Cheng‐Guo Duan, Kai Tang, Bangshing Wang, Huiming Zhang, Mingguang Lei, Kun Lu, Satendra K. Mangrauthia, Pengcheng Wang, Guohui Zhu, Yang Zhao, Jian Kang Zhu (2013). RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene <i>IBM1</i>. , 110(38), DOI: https://doi.org/10.1073/pnas.1315399110.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1073/pnas.1315399110
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access