RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass

0 Datasets

0 Files

English
2021
Soil Biology and Biochemistry
Vol 160
DOI: 10.1016/j.soilbio.2021.108345

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Yu Luo
Mouliang Xiao
Hongzhao Yuan
+7 more

Abstract

Rice rhizodeposition plays an important role in carbon sequestration in paddy soils. However, the pathways through which rice rhizodeposits contribute to soil organic C (SOC) formation are poorly understood because of specific paddy soil conditions. Furthermore, microbial necromass has been largely ignored in studies examining the contribution of rhizodeposits to C sequestration during plant growth. To evaluate the contribution of microbial necromass to SOC formation via rhizodeposition, rice (Oryza sativa L.) plants were continuously labeled with 13CO2 for 38 days under ambient (aCO2, 400 μL L−1) or elevated CO2 (eCO2, 800 μL L−1) in a paddy field at two levels of N fertilization. The distributions of photosynthetic-13C in the shoots and roots, microbial communities, and SOC fractions were quantified. eCO2 increased plant growth and, consequently, the total 13C incorporated into the shoots, roots, and SOC compared to aCO2, while N fertilization (100 kg N ha−1) decreased root biomass and rhizodeposits in the soil and microbial pools, including living biomass (phospholipid fatty acids, PLFA) and microbial necromass (amino sugars). Rhizodeposits were initially immobilized mainly by bacteria and preferentially recovered in fungal necromass (glucosamine). While 13C incorporation into PLFAs was slightly increased during plant growth, 13C in microbial necromass increased greatly between the tillering and booting stages. Fungal necromass, which is less decomposable compared to bacterial residues, was the largest contributor to C sequestration with rhizodeposits via the mineral-associated SOC fraction, particularly under elevated CO2 without N fertilization. This study reveals the significance of the C pathways from rhizodeposits through fungal necromass and organo-mineral associations for the build up of SOC in paddy fields.

How to cite this publication

Yu Luo, Mouliang Xiao, Hongzhao Yuan, Chao Liang, Zhenke Zhu, Jianming Xu, Yakov Kuzyakov, Jinshui Wu, Tida Ge, Caixian Tang (2021). Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass. Soil Biology and Biochemistry, 160, pp. 108345-108345, DOI: 10.1016/j.soilbio.2021.108345.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2021.108345

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access