RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Revisiting Large-Kernel CNN Design via Structural Re-Parameterization for Sensor-Based Human Activity Recognition

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Revisiting Large-Kernel CNN Design via Structural Re-Parameterization for Sensor-Based Human Activity Recognition

0 Datasets

0 Files

en
2024
Vol 24 (8)
Vol. 24
DOI: 10.1109/jsen.2024.3371462

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Minghui Yao
Lei Zhang
Dongzhou Cheng
+5 more

Abstract

During recent years, human activity recognition (HAR) using smart wearable sensors has become a main research focus in ubiquitous computing scenario. Deep convolutional neural networks (CNNs) have achieved significant success in HAR due to their automatic feature extracting ability in capturing local activity details. Due to superior performance, previous most works always prefer to apply small kernels instead of large kernels to handle time series sensor data for activity recognition. However, they do not intend to answer the key questions: why do large kernels underperform small kernels? How to close the performance gap? Intuitively, benefiting from larger receptive field (RF), larger kernels should have a great potential to model long-range dependencies in time series sensor data. So far, there has been little effort devoted to the larger-kernel design. In this article, we revisit the design of larger-kernel convolutions, which long have been neglected in the context of HAR. We find that both identity shortcut and structural re-parameterization can fully unleash the potential of larger-kernel convolutions. Extensive experiments and ablation studies on four mainstream benchmark datasets including PAMAP2, USC-HAD, UniMiB-SHAR, and OPPORTUNITY, show that our larger-kernel convolutions can further push the limit of small-kernel CNN performances under similar inference time, which can be used a drop-in replacement for small-kernel conv layers. For example, compared to the small-kernel baselines, our proposed approach can consistently boost recognition accuracy by 0.55%, 1.00%, 3.94%, and 1.64% on PAMAP2, USC-HAD, UniMiB-SHAR, and OPPORTUNITY, respectively, which is very competitive among the state-of-the-arts (SOTA). We believe that the incurred high performance is mainly due to larger effective RFs built via large kernels. The practical inference time is evaluated on a real hardware device. Our code can be available at: <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/MinghuiYao/ELK-HAR/</uri> .

How to cite this publication

Minghui Yao, Lei Zhang, Dongzhou Cheng, Lutong Qin, Xin Liu, Zenan Fu, Hao Wu, Aiguo Song (2024). Revisiting Large-Kernel CNN Design via Structural Re-Parameterization for Sensor-Based Human Activity Recognition. , 24(8), DOI: https://doi.org/10.1109/jsen.2024.3371462.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/jsen.2024.3371462

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access