RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2010

REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls

0 Datasets

0 Files

English
2010
Global Change Biology
Vol 16 (12)
DOI: 10.1111/j.1365-2486.2010.02179.x

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Yakov Kuzyakov
Olga Gavrichkova

Abstract

CO 2 efflux from soil depends on the availability of organic substances respired by roots and microorganisms. Therefore, photosynthetic activity supplying carbohydrates from leaves to roots and rhizosphere is a key driver of soil CO 2 . This fact has been overlooked in most soil CO 2 studies because temperature variations are highly correlated with solar radiation and mask the direct effect of photosynthesis on substrate availability in soil. This review highlights the importance of photosynthesis for rhizosphere processes and evaluates the time lag between carbon (C) assimilation and CO 2 release from soil. Mechanisms and processes contributing to the lag were evaluated. We compared the advantages and shortcomings of four main approaches used to estimate this time lag: (1) interruption of assimilate flow from leaves into the roots and rhizosphere, and analysis of the decrease of CO 2 efflux from soil, (2) time series analysis (TSA) of CO 2 fluxes from soil and photosynthesis proxies, (3) analysis of natural δ 13 C variation in CO 2 with photosynthesis‐related parameters or δ 13 C in the phloem and leaves, and (4) pulse labeling of plants in artificial 14 CO 2 or 13 CO 2 atmosphere with subsequent tracing of 14 C or 13 C in CO 2 efflux from soil. We concluded that pulse labeling is the most advantageous approach. It allows clear evaluation not only of the time lag, but also of the label dynamics in soil CO 2 , and helps estimate the mean residence time of recently assimilated C in various above‐ and belowground C pools. The impossibility of tracing the phloem pressure–concentration waves by labeling approach may be overcome by its combination with approaches based on TSA of CO 2 fluxes and its δ 13 C with photosynthesis proxies. Numerous studies showed that the time lag for grasses is about 12.5±7.5 (SD) h. The time lag for mature trees was much longer (∼4–5 days). Tree height slightly affected the lag, with increasing delay of 0.1 day m −1 . By evaluating bottle‐neck processes responsible for the time lag, we conclude that, for trees, the transport of assimilates in phloem is the rate‐limiting step. However, it was not possible to predict the lag based on the phloem transport rates reported in the literature. We conclude that studies of CO 2 fluxes from soil, especially in ecosystems with a high contribution of root‐derived CO 2 , should consider photosynthesis as one of the main drivers of C fluxes. This calls for incorporating photosynthesis in soil C turnover models.

How to cite this publication

Yakov Kuzyakov, Olga Gavrichkova (2010). REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 16(12), pp. 3386-3406, DOI: 10.1111/j.1365-2486.2010.02179.x.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2010

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Global Change Biology

DOI

10.1111/j.1365-2486.2010.02179.x

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access