0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMechanoluminescence (ML) involves light emission induced by mechanical stress, categorized into triboluminescence (TL), piezoluminescence (PL), sonoluminescence (SL), and triboelectrification-induced electroluminescence (TIEL). The most common is TL, in which crystal fracture generates opposing charges that excite surrounding molecules. In PL, applied pressure induces light emission via charge recombination. SL occurs in gas-saturated liquids under sudden pressure changes. TIEL has gained increasing attention as it operates without the need for asymmetric crystal structures or strain fields. However, conventional ML faces practical limitations due to its dependence on complex structures or strain fields. In contrast, contact-electro-luminescence (CEL) has emerged as a promising alternative, enabling luminol luminescence via charge transfer and reactive oxygen species generation through contact electrification (CE) between inert dielectrics and water. CEL provides a simpler and more versatile approach than traditional ML techniques, underscoring the pivotal role of charge-transfer processes. This perspective highlights the potential of CEL in expanding ML applications across sensing, energy conversion, and environmental monitoring.
Xiaolin Huo, Shaoxin Li, Bing Sun, Zhong Lin Wang, Di Wei (2025). Revealing the Role of Interfacial Charge Transfer in Mechanoluminescence. , 15(9), DOI: https://doi.org/10.3390/nano15090656.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/nano15090656
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access