0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical‐poling‐induced ion migration, accounting for many unusual attributes and thus performance in perovskite‐based devices, remain comparatively elusive. Herein, the electrical‐poling‐promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus‐assisted solution‐printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical‐poling‐induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical‐poling‐triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion‐migration‐produced polarization potential may represent an important endeavor toward a wide range of high‐performance perovskite‐based photodetectors, solar cells, transistors, scintillators, etc.
Chuntao Lan, Haiyang Zou, Longfei Wang, Meng Zhang, Shuang Pan, Ying Ma, Yiping Qiu, Zhong Lin Wang, Zhiqun Lin (2020). Revealing Electrical‐Poling‐Induced Polarization Potential in Hybrid Perovskite Photodetectors. , 32(47), DOI: https://doi.org/10.1002/adma.202005481.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.202005481
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access