0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessClimate change impacts soil microbial communities, activities and functionality. Nonetheless, responses of the microbiome in soil microenvironments with contrasting substrate availability in the rhizosphere to climatic stresses such as drought are largely unknown. To fill this knowledge gap, we coupled soil zymography with site-specific micro-sampling of the soil and subsequent high-throughput sequencing. This helped identify how the bacterial community structure and the genes encoding N-cycling enzymes (leucine aminopeptidase and chitinase) in rhizosphere hotspots and coldspots (microsites with activities in the range of bulk soil but localized within the rhizosphere) of maize respond to drought (20% WHC, two weeks). The elevated activities of leucine aminopeptidase and chitinase in rhizosphere hotspots were caused by the tight collaborative relationships between bacteria and their stable network structure rather than by any significant shift in bacterial community structure or enzyme-encoding gene copies. Despite the similarity in bacterial community structure in soil under drought and optimal moisture, functional predictions indicated the increased relative abundance of genera belonging to Actinobacteria capable of leucine aminopeptidase and chitinase production, especially Streptomyces, Nocardioides, Marmoricola, and Knoellia. Accordingly, the number of gene copies encoded by Actinobacteria for these two enzymes increased by 5.0–17% under drought. Among the bacteria with increased relative abundance under drought, Luedemannella played a crucial role in mediating nutrients and energy fluxes between bacteria. This was reflected in a 35–70% increase in leucine aminopeptidase and chitinase activities under drought. The resistance of enzyme activities to drought was higher in hotpots than that in coldspots. These results revealed that rhizosphere bacterial community composition remained stable, and that the number of gene copies encoded by Actinobacteria responsible for N-cycling enzymes increased under drought. The expected reduction of processes of N cycle was absent. Instead, bacteria increased N mining rate in those hotspots remaining active despite water scarcity.
Xuechen Zhang, David D. Myrold, Lingling Shi, Yakov Kuzyakov, Hongcui Dai, Duyen Thi Thu Hoang, Michaela Dippold, Xiangtian Meng, Xiaona Song, Ziyan Li, Jie Zhou, Bahar S. Razavi (2021). Resistance of microbial community and its functional sensitivity in the rhizosphere hotspots to drought. Soil Biology and Biochemistry, 161, pp. 108360-108360, DOI: 10.1016/j.soilbio.2021.108360.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2021.108360
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access