0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMean residence time (MRT) of carbon (C) in soil is the most important parameter of C sequestration and stability and crucial for CO2 removal from the atmosphere. Climate and soil properties controls of MRT of upland soils are well known, but the drivers of C stability in paddies were never summarized. Here, we estimated MRT of paddies across monsoon Asia using the stock-over-flux method, i.e., soil organic C (SOC) stock over organic matter input considering the net primary production (NPP), and determined the main factors affecting SOC turnover. The average MRT of paddy soils in monsoon Asia ranges between 19 and 50 yr, depending on straw management. These estimates are similar to recent estimates for the global average MRT across all soils, but longer than for upland croplands. Tropical regions have the shortest MRT for rice paddies (16–42 yr), while the MRT of C in soils of temperate and subtropical regions are longer (20–56 yr). Across a wide range of environmental factors, MRT was most strongly affected by temperature. We estimate that 2 °C warming decreases MRT by 7% on average, with the strongest decreases in the western Indonesian islands and north-east China. Because C stocks per area in paddy soils are larger and the MRT is longer than in corresponding upland cropland soils, paddies play a key role in the global C cycle. Our results emphasize the need for management practices that retain stable soil C input rates to reduce possible positive feedbacks for global warming.
Yalong Liu, Tida Ge, Ping Wang, Kees Jan van Groenigen, Xuebin Xu, Kun Cheng, Zhenke Zhu, Jingkuan Wang, Georg Guggenberger, Ji Chen, Yiqi Luo, Yakov Kuzyakov (2023). Residence time of carbon in paddy soils. Journal of Cleaner Production, 400, pp. 136707-136707, DOI: 10.1016/j.jclepro.2023.136707.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Journal of Cleaner Production
DOI
10.1016/j.jclepro.2023.136707
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access