RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Regulation of soil phosphorus availability and composition during forest succession in subtropics

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Regulation of soil phosphorus availability and composition during forest succession in subtropics

0 Datasets

0 Files

English
2021
Forest Ecology and Management
Vol 502
DOI: 10.1016/j.foreco.2021.119706

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Xiaoye Zhu
Xi Fang
WANG Liu-Fang
+4 more

Abstract

Although phosphorus (P) is a limiting nutrient for plant growth in subtropical forests, the effects of forest succession on soil P dynamics, which in turn influences P availability, are unclear. The objective was to access the impacts of forest succession on P fractions of different availability (Hedley sequential fractionation) in highly weathered subtropical soils. We compared the P dynamics and availability under the chronosequence of forest succession from four stages: i) Cunninghamia lanceolata plantation, ii) through mixed broadleaf-conifer, iii) deciduous broadleaved, and finally iv) evergreen broadleaved forest. The soil P was dominated by stable P fractions (69–76%) in all successional stages. Forest succession increased total P content from plantation (199 mg kg−1) to evergreen broadleaved forest (253 mg kg−1), whereas P reached the peak in deciduous broadleaved forest and then remains stable due to balance between input with litter and litter decomposition and tree uptake. Stable P (non-available P) increased for 31–39% with forest succession because soil acidification led to more Fe and Al (oxyhydr)oxides strongly bounding P. Moderately labile P (moderately available P) contents under deciduous and evergreen broadleaved forests were higher than under plantation and mixed forest due to organic matter accumulation. However, labile (easily available) P content was reduced 35–50% by succession because of P removal by plant uptake. Available P content reached the peak under deciduous broadleaved forest (64–81 mg kg−1) and decreased again, indicating that forest ecosystem transit from P acquiring to P recycling system (litter input and plant uptake of mineralized P). Fine root biomass was the primary driver that controlled total, moderately labile and stable P contents during forest succession. Available P increased with soil organic carbon (SOC), suggesting that organic matter is crucial to maintain P availability. The C/P ratio of litter was the primary driver decreasing available P because litter decomposition released P is the main source determining P availability in soil. The increase of moderately labile P following forest succession played a crucial role for accumulation of available P. These results suggest that forest succession increases soil P availability until deciduous broadleaved forest. Therefore, strong measures to facilitate succession to the deciduous broadleaved forest stage should be a key approach to increase long-term soil P availability in subtropics.

How to cite this publication

Xiaoye Zhu, Xi Fang, WANG Liu-Fang, Wenhua Xiang, Hattan A. Alharbi, Pifeng Lei, Yakov Kuzyakov (2021). Regulation of soil phosphorus availability and composition during forest succession in subtropics. Forest Ecology and Management, 502, pp. 119706-119706, DOI: 10.1016/j.foreco.2021.119706.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Forest Ecology and Management

DOI

10.1016/j.foreco.2021.119706

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access