0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDecomposition of organic matter in high latitude biomes makes a significant contribution to global fluxes of nutrients and carbon and is expected to accelerate due to climate change. The majority of studies have focused on decomposition during the growing season, but winter climate is expected to change dramatically. Furthermore, knowledge of the drivers of organic matter decomposition, such as litter chemical composition, has primarily been tested across the growing season so it is unknown whether these drivers are also important during the winter. Given that the depth of snow cover insulates the sub-nivean climate from the much colder air, it is an important control on winter decomposition and is expected to be influenced by climate change, we experimentally manipulated snow cover to simulate impacts of different winter precipitation scenarios on soil processes. Our results show that despite snow reduction negatively affecting decomposer abundance (by 99%) and bulk soil respiration (by 47%), litter decomposition rates showed little to no response. Furthermore, variation in winter decomposition rates among litter types was unrelated to nutrient status, indicating that our current understanding of drivers of litter decomposition may not hold during winter months. Despite very large reductions in decomposer fauna due to snow removal, litter decomposition rates were not consistently responsive, indicative of decoupled responses of soil organisms and soil processes to winter climate change.
Stef Bokhorst, Daniel B. Metcalfe, David A. Wardle (2013). Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology and Biochemistry, 62, pp. 157-164, DOI: 10.1016/j.soilbio.2013.03.016.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2013.03.016
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access