RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Reducing the flammability of hydrophobic silica aerogels by doping with hydroxides

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Reducing the flammability of hydrophobic silica aerogels by doping with hydroxides

0 Datasets

0 Files

English
2019
Journal of Hazardous Materials
Vol 373
DOI: 10.1016/j.jhazmat.2019.03.112

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Zhi Li
Siqi Huang
Long Shi
+3 more

Abstract

In this work, we utilized Al(OH)3 (AH) and Mg(OH)2 (MH) as dopants to reduce the flammability of hydrophobic silica aerogels (SA) and the related thermal properties and flame retardance were investigated detailedly. The TG-DSC analyses showed the thermostability of SA in MH/SA reached 512.4 °C and that for AH/SA was just 426.1 °C, both of which were higher than that of pure SA, 399.5 °C. It was known from cone calorimeter tests that the heat release rate, peak heat release rate and total heat release of AH/SA and MH/SA decreased significantly compared to that of pure SA. The time to ignition (TTI) of MH/SA was dramatically extended, reaching 20˜38 s, which was far longer than those of pure SA (˜6 s) and AH/SA (3˜8 s). The reduction in CO concentration, CO production rate and cumulative CO production verified the decreased smoke toxicity of AH/SA and MH/SA. It was further indicated that the flame-retardant effect of AH and MH correlated with their inhibitory effect on the pyrolysis of SA, while MH showed much better flame-retardant performance than that of AH. The research outcomes provide an inspiration to reduce the flammability of SA and benefit their expansion in thermal insulation field.

How to cite this publication

Zhi Li, Siqi Huang, Long Shi, Zhicheng Li, Qiong Liu, Ming Li (2019). Reducing the flammability of hydrophobic silica aerogels by doping with hydroxides. Journal of Hazardous Materials, 373, pp. 536-546, DOI: 10.1016/j.jhazmat.2019.03.112.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Journal of Hazardous Materials

DOI

10.1016/j.jhazmat.2019.03.112

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access