0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil organic matter (SOM) concentration and enzyme activity are important biochemical indicators of soil health for assessing the sustainability of agricultural management practices. However, little is known about the long-term effects of tillage and crop residue management on SOM and enzyme activities in soil particle-size fractions on the Loess Plateau of Northern China. The objective of this study was to investigate the effects of 11 years of combined tillage and crop residue management treatments on soil organic carbon (SOC), total nitrogen (TN) concentrations and enzyme activities in bulk soil and particle-size fractions from a rainfed wheat (Triticum aestivum L.) monoculture system in this region. We hypothesized that reduced tillage and increased residue retention would increase SOC, TN and enzyme activities in both bulk soil and particle-size fractions, and that enzyme activity would serve as a more sensitive indicator of soil health in response to management. Compared with conventional tillage and residue removal (CTRR), reduced tillage and stubble mulch residue retention (RTSM) increased bulk soil activities of most enzymes (sulfatase +68%, invertase +62%, β-glucosidase +58%, dehydrogenase +46%). These increases were greater than the relative increases in total SOC (34%) and TN (33%) concentrations, supporting our hypothesis of a stronger response in microbial activity to management than total element stocks. The RTSM treatment also increased SOC and TN concentrations, as well as β-glucosidase, acid phosphatase and urease activities in all particle-size fractions (2000-250, 250-53, 53-2 and < 2 μm) compared with the CTRR treatment. Both β-glucosidase and acid phosphatase showed a general decrease from coarse- to fine-sized fractions, and resembled the distribution of SOC and TN concentrations in particle-size fractions. Conversely, urease activity was greater in sand and clay fractions, which was decoupled from SOC and TN distributions. Our results indicate that biological indicators of soil health were more sensitive than C and N stocks to cumulative long-term changes in tillage and residue management.
Haiqing Chen, Qiong Liang, Yuanshi Gong, Yakov Kuzyakov, Mingsheng Fan, Alain F. Plante (2019). Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil and Tillage Research, 194, pp. 104296-104296, DOI: 10.1016/j.still.2019.104296.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Soil and Tillage Research
DOI
10.1016/j.still.2019.104296
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access