RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2013

Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin

0 Datasets

0 Files

English
2013
The Journal of Cell Biology
Vol 203 (1)
DOI: 10.1083/jcb.201304188

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Akira Shizuo
Akira Shizuo

Osaka University

Verified
Naonobu Fujita
Eiji Morita
Takashi Itoh
+17 more

Abstract

Although ubiquitin is thought to be important for the autophagic sequestration of invading bacteria (also called xenophagy), its precise role remains largely enigmatic. Here we determined how ubiquitin is involved in this process. After invasion, ubiquitin is conjugated to host cellular proteins in endosomes that contain Salmonella or transfection reagent–coated latex (polystyrene) beads, which mimic invading bacteria. Ubiquitin is recognized by the autophagic machinery independently of the LC3–ubiquitin interaction through adaptor proteins, including a direct interaction between ubiquitin and Atg16L1. To ensure that invading pathogens are captured and degraded, Atg16L1 targeting is secured by two backup systems that anchor Atg16L1 to ubiquitin-decorated endosomes. Thus, we reveal that ubiquitin is a pivotal molecule that connects bacteria-containing endosomes with the autophagic machinery upstream of LC3.

How to cite this publication

Naonobu Fujita, Eiji Morita, Takashi Itoh, Atsushi Tanaka, Megumi Nakaoka, Yuki Osada, Tetsuo Umemoto, Tatsuya Saitoh, Hitoshi Nakatogawa, Shouhei Kobayashi, Tokuko Haraguchi, Jun‐Lin Guan, Kazuhiro Iwaï, Fuminori Tokunaga, Kazunobu Saito, Koutaro Ishibashi, Akira Shizuo, Mitsunori Fukuda, Takeshi Noda, Tamotsu Yoshimori (2013). Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. The Journal of Cell Biology, 203(1), pp. 115-128, DOI: 10.1083/jcb.201304188.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

20

Datasets

0

Total Files

0

Language

English

Journal

The Journal of Cell Biology

DOI

10.1083/jcb.201304188

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access