RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems

0 Datasets

0 Files

en
2017
Vol 4 (7)
Vol. 4
DOI: 10.1002/advs.201700029

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Qiang Zheng
Bojing Shi
Zhou Li
+1 more

Abstract

Implantable medical devices (IMDs) have become indispensable medical tools for improving the quality of life and prolonging the patient's lifespan. The minimization and extension of lifetime are main challenges for the development of IMDs. Current innovative research on this topic is focused on internal charging using the energy generated by the physiological environment or natural body activity. To harvest biomechanical energy efficiently, piezoelectric and triboelectric energy harvesters with sophisticated structural and material design have been developed. Energy from body movement, muscle contraction/relaxation, cardiac/lung motions, and blood circulation is captured and used for powering medical devices. Other recent progress in this field includes using PENGs and TENGs for our cognition of the biological processes by biological pressure/strain sensing, or direct intervention of them for some special self-powered treatments. Future opportunities lie in the fabrication of intelligent, flexible, stretchable, and/or fully biodegradable self-powered medical systems for monitoring biological signals and treatment of various diseases in vitro and in vivo.

How to cite this publication

Qiang Zheng, Bojing Shi, Zhou Li, Zhong Lin Wang (2017). Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. , 4(7), DOI: https://doi.org/10.1002/advs.201700029.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/advs.201700029

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access