0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe energy loss of tires during service is closely related to the hysteresis of tire tread, which is governed by the dispersion and interface of the elastomer nanocomposites. However, traditional undeformable spherical fillers have approached a bottleneck in regulating the viscoelasticity and lowering the hysteresis loss. Herein, the designed covalent interface in the graphene/elastomer nanocomposite maximizes the reinforcement of the nanomaterial as well as minimizes the dynamic energy loss. The reinforced interfacial interaction, an ultralow percolation threshold of tensile strength and high reinforcement synergistically benefit these nano-organized rubber nanocomposites. The energy losses under dynamic loading are largely suppressed in this material, due to the reduced nano-scale frictions. The developed graphene/elastomer nanocomposites are applied to typical dynamic rubber product - auto tires, and the tests indicate that these tires possess energy efficiency close to the highest “A-grade”, which gave great economic and environmental improvements. The critical role of interface structure in the performance of the elastomer nanocomposites was revealed and new design strategy for low dynamic energy losses in rubber products was suggested.
Zhijun Yang, Jun Liu, Ruijuan Liao, Ganwei Yang, Xiaohui Wu, Zhenghai Tang, Guo Baochun, Liqun Zhang, Yong Ma, Qiuhai Nie, Feng Wang (2016). Rational design of covalent interfaces for graphene/elastomer nanocomposites. Composites Science and Technology, 132, pp. 68-75, DOI: 10.1016/j.compscitech.2016.06.015.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Composites Science and Technology
DOI
10.1016/j.compscitech.2016.06.015
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access