RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Rapid microbial uptake and mineralization of 14C-labelled cysteine and methionine along a grassland productivity gradient

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Rapid microbial uptake and mineralization of 14C-labelled cysteine and methionine along a grassland productivity gradient

0 Datasets

0 Files

English
2023
Soil Biology and Biochemistry
Vol 180
DOI: 10.1016/j.soilbio.2023.109022

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Deying Wang
David R. Chadwick
Paul W. Hill
+2 more

Abstract

Cysteine (Cys) and methionine (Met) are central to terrestrial S cycling because they are sources of carbon (C), nitrogen (N), and sulphur (S) for plant nutrition and microbial growth. However, soil microorganisms are expected to compete for the C, N and S in these S-amino acids. We hypothesized that microbial competition would be greater in soils with low plant productivity due to lower C inputs from plants. Here we added 14C-labelled Cys and Met to 5 soils collected from an altitude-driven primary grassland productivity gradient, we then measured microbial uptake with a centrifugal drainage procedure over 60 min, and the subsequent mineralization with NaOH traps over 48 h. Our results revealed that both Cys and Met were rapidly assimilated by soil microbes, with half-lives ranging from 0.34 to 2.14 min, which is an order of magnitude (or more) faster than when determined from measurement of 14CO2 evolution. This considerable delay between microbial 14C removal from soil solution and subsequent 14CO2 evolution indicates that the degradation of Cys and Met in grassland soils occurred mainly through biological processes. Soil microbial uptake of Cys and Met was dominated by a high-affinity transport system (0.01–0.1 mM), while a lower affinity transport system became more important at higher substrate concentrations (1–100 mM). In addition, microbial uptake and mineralization rates of Cys and Met declined in less productive, higher elevation sites, suggesting that the turnover of organic N and S, and subsequent availability for plant uptake is likely to be controlled by soil fertility. We conclude that although Cys and Met may represent a minor component of DON and DOS pools in soil, their importance for soil microbes and plant nutrition may have been underestimated due to their fast turnover and replenishment rates in grassland soils.

How to cite this publication

Deying Wang, David R. Chadwick, Paul W. Hill, Tida Ge, Davey L Jones (2023). Rapid microbial uptake and mineralization of 14C-labelled cysteine and methionine along a grassland productivity gradient. Soil Biology and Biochemistry, 180, pp. 109022-109022, DOI: 10.1016/j.soilbio.2023.109022.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2023.109022

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access