0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Despite recent progress in producing perovskite nanowires (NWs) for optoelectronics, it remains challenging to solution‐print an array of NWs with precisely controlled position and orientation. Herein, we report a robust capillary‐assisted solution printing (CASP) strategy to rapidly access aligned and highly crystalline perovskite NW arrays. The key to the CASP approach lies in the integration of capillary‐directed assembly through periodic nanochannels and solution printing through the programmably moving substrate to rapidly guide the deposition of perovskite NWs. The growth kinetics of perovskite NWs was closely examined by in situ optical microscopy. Intriguingly, the as‐printed perovskite NWs array exhibit excellent optical and optoelectronic properties and can be conveniently implemented for the scalable fabrication of photodetectors.
Shuang Pan, Haiyang Zou, Aurelia Chi Wang, Zewei Wang, Jiwoo Yu, Chuntao Lan, Qiliang Liu, Zhong Lin Wang, Tianquan Lian, Juan Peng, Zhiqun Lin (2020). Rapid Capillary‐Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. , 132(35), DOI: https://doi.org/10.1002/ange.202004912.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/ange.202004912
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access