0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHarvesting thermoelectric energy mainly relies on the Seebeck effect that utilizes a temperature difference between two ends of the device for driving the diffusion of charge carriers. However, in an environment that the temperature is spatially uniform without a gradient, the pyroelectric effect has to be the choice, which is based on the spontaneous polarization in certain anisotropic solids due to a time-dependent temperature variation. Using this effect, we experimentally demonstrate the first application of pyroelectric ZnO nanowire arrays for converting heat energy into electricity. The coupling of the pyroelectric and semiconducting properties in ZnO creates a polarization electric field and charge separation along the ZnO nanowire as a result of the time-dependent change in temperature. The fabricated nanogenerator has a good stability, and the characteristic coefficient of heat flow conversion into electricity is estimated to be ∼0.05-0.08 Vm(2)/W. Our study has the potential of using pyroelectric nanowires to convert wasted energy into electricity for powering nanodevices.
Ya Yang, Wenxi Guo, Ken C. Pradel, Guang Zhu, Yusheng Zhou, Yan Zhang, Youfan Hu, Long Lin, Zhong Lin Wang (2012). Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. , 12(6), DOI: https://doi.org/10.1021/nl3003039.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl3003039
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access