RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Pyramid dilated convolutional neural network for image denoising

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Pyramid dilated convolutional neural network for image denoising

0 Datasets

0 Files

en
2022
Vol 31 (02)
Vol. 31
DOI: 10.1117/1.jei.31.2.023024

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jun Li
Jun Li

Institution not specified

Verified
Xinlei Jia
Yali Peng
Jun Li
+3 more

Abstract

Convolutional neural network has been successfully applied to image denoising. In particular, dilated convolution, which expands the network's receptive field, has been widely used and has achieved good results in image denoising. Losing some image information, a standard network cannot effectively reconstruct tiny image details from noisy images. To solve this problem, we propose a pyramid dilated CNN, which mainly has three pyramid dilated convolutional blocks (PDCBs) and a gated fusion unit (GFU). PDCB uses dilated convolution to expand the network's receptive field and the pyramid structure to obtain more image details. GFU fuses and enhances the feature maps from different blocks. Experiments demonstrate that the proposed method outperforms the comparative state-of-the-art denoising methods for gray and color images. In addition, the proposed method can effectively deal with real-world noisy images.

How to cite this publication

Xinlei Jia, Yali Peng, Jun Li, Yunhong Xin, Bao Ge, Shigang Liu (2022). Pyramid dilated convolutional neural network for image denoising. , 31(02), DOI: https://doi.org/10.1117/1.jei.31.2.023024.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1117/1.jei.31.2.023024

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access