RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Pulsed Nanogenerator with Huge Instantaneous Output Power Density

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2013

Pulsed Nanogenerator with Huge Instantaneous Output Power Density

0 Datasets

0 Files

en
2013
Vol 7 (8)
Vol. 7
DOI: 10.1021/nn403151t

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Gang Cheng
Zong‐Hong Lin
Long Lin
+2 more

Abstract

A nanogenerator (NG) usually gives a high output voltage but low output current, so that the output power is low. In this paper, we developed a general approach that gives a hugely improved instantaneous output power of the NG, while the entire output energy stays the same. Our design is based on an off–on–off contact based switching during mechanical triggering that largely reduces the duration of the charging/discharge process, so that the instantaneous output current pulse is hugely improved without sacrificing the output voltage. For a vertical contact-separation mode triboelectric NG (TENG), the instantaneous output current and power peak can reach as high as 0.53 A and 142 W at a load of 500 Ω, respectively. The corresponding instantaneous output current and power density peak even approach 1325 A/m2 and 3.6 × 105 W/m2, which are more than 2500 and 1100 times higher than the previous records of TENG, respectively. For the rotation disk based TENG in the lateral sliding mode, the instantaneous output current and power density of 104 A/m2 and 1.4 × 104 W/m2 have been demonstrated at a frequency of 106.7 Hz. The approach presented here applies to both a piezoelectric NG and a triboelectric NG, and it is a major advance toward practical applications of a NG as a high pulsed power source.

How to cite this publication

Gang Cheng, Zong‐Hong Lin, Long Lin, Zuliang Du, Zhong Lin Wang (2013). Pulsed Nanogenerator with Huge Instantaneous Output Power Density. , 7(8), DOI: https://doi.org/10.1021/nn403151t.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/nn403151t

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access