RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Pseudocapacitive Conjugated Polyelectrolyte/2D Electrolyte Hydrogels with Enhanced Physico‐Electrochemical Properties

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Pseudocapacitive Conjugated Polyelectrolyte/2D Electrolyte Hydrogels with Enhanced Physico‐Electrochemical Properties

0 Datasets

0 Files

English
2022
Advanced Electronic Materials
Vol 8 (5)
DOI: 10.1002/aelm.202100942

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Glenn Quek
Yude Su
Ricardo K. Donato
+8 more

Abstract

Conducting polymer hydrogels (CPHs) are an attractive class of materials that synergize the electrical properties of organic semiconductors with the physical properties of hydrogels. Of particular interest is the implementation of CPHs as electrode materials for electrochemical energy storage by taking advantage of redox‐tunable conjugated backbones and the large electroactive surface area. Herein, the use of 2D electrolytes as an effective post‐polymerization additive to enhance the pseudocapacitive performance of CPHs, is demonstrated. By using the self‐doped conjugated polyelectrolyte CPE‐K hydrogel as a model system, improvements in cycling stability, specific capacitance and working voltage window upon addition of the 2D electrolytes, are shown. Furthermore, positively charged 2D electrolytes to be more effective than their negatively charged counterparts are revealed. Rheology measurements and SEM imaging indicate that the 2D electrolytes serve as non‐covalent cross‐linkers that help in forming a mechanically more robust and highly percolated conducting network. These results provide a new and simple to execute post‐polymerization strategy to optimize the electrochemical performance of CPH‐based pseudocapacitors.

How to cite this publication

Glenn Quek, Yude Su, Ricardo K. Donato, Ricardo Javier Vázquez, Valéria S. Marangoni, Pei Rou Ng, Mariana C. F. Costa, Binu Kundukad, Konstantin ‘kostya’ Novoselov, A. H. Castro Neto, Guillermo C. Bazan (2022). Pseudocapacitive Conjugated Polyelectrolyte/2D Electrolyte Hydrogels with Enhanced Physico‐Electrochemical Properties. Advanced Electronic Materials, 8(5), DOI: 10.1002/aelm.202100942.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Advanced Electronic Materials

DOI

10.1002/aelm.202100942

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration