RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. ProtoHAR: Prototype Guided Personalized Federated Learning for Human Activity Recognition

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

ProtoHAR: Prototype Guided Personalized Federated Learning for Human Activity Recognition

0 Datasets

0 Files

en
2023
Vol 27 (8)
Vol. 27
DOI: 10.1109/jbhi.2023.3275438

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Dongzhou Cheng
Lei Zhang
Can Bu
+3 more

Abstract

Federated Learning (FL) has recently attracted great interest in sensor-based human activity recognition (HAR) tasks. However, in real-world environment, sensor data on devices is non-independently and identically distributed (Non-IID), e.g., activity data recorded by most devices is sparse, and sensor data distribution for each client may be inconsistent. As a result, the traditional FL methods in the heterogeneous environment may incur a drifted global model that causes slow convergence and a heavy communication burden. Although some FL methods are gradually being applied to HAR, they are designed for overly ideal scenarios and do not address such Non-IID problem in the real-world setting. It is still a question whether they can be applied to cross-device FL. To tackle this challenge, we propose ProtoHAR, a prototype-guided FL framework for HAR, which aims to decouple the representation and classifier in the heterogeneous FL setting efficiently. It leverages the global prototype to correct the activity feature representation to make the prototype knowledge flow among clients without leaking privacy while solving a better classifier to avoid excessive drift of the local model in personalized training. Extensive experiments are conducted on four publicly available datasets: USC-HAD, UNIMIB-SHAR, PAMAP2, and HARBOX, which are collected in both controlled environments and real-world scenarios. The results show that compared with the state-of-the-art FL algorithms, ProtoHAR achieves the best performance and faster convergence speed in HAR datasets.

How to cite this publication

Dongzhou Cheng, Lei Zhang, Can Bu, Xing Wang, Hao Wu, Aiguo Song (2023). ProtoHAR: Prototype Guided Personalized Federated Learning for Human Activity Recognition. , 27(8), DOI: https://doi.org/10.1109/jbhi.2023.3275438.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/jbhi.2023.3275438

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access