0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFederated Learning (FL) has recently attracted great interest in sensor-based human activity recognition (HAR) tasks. However, in real-world environment, sensor data on devices is non-independently and identically distributed (Non-IID), e.g., activity data recorded by most devices is sparse, and sensor data distribution for each client may be inconsistent. As a result, the traditional FL methods in the heterogeneous environment may incur a drifted global model that causes slow convergence and a heavy communication burden. Although some FL methods are gradually being applied to HAR, they are designed for overly ideal scenarios and do not address such Non-IID problem in the real-world setting. It is still a question whether they can be applied to cross-device FL. To tackle this challenge, we propose ProtoHAR, a prototype-guided FL framework for HAR, which aims to decouple the representation and classifier in the heterogeneous FL setting efficiently. It leverages the global prototype to correct the activity feature representation to make the prototype knowledge flow among clients without leaking privacy while solving a better classifier to avoid excessive drift of the local model in personalized training. Extensive experiments are conducted on four publicly available datasets: USC-HAD, UNIMIB-SHAR, PAMAP2, and HARBOX, which are collected in both controlled environments and real-world scenarios. The results show that compared with the state-of-the-art FL algorithms, ProtoHAR achieves the best performance and faster convergence speed in HAR datasets.
Dongzhou Cheng, Lei Zhang, Can Bu, Xing Wang, Hao Wu, Aiguo Song (2023). ProtoHAR: Prototype Guided Personalized Federated Learning for Human Activity Recognition. , 27(8), DOI: https://doi.org/10.1109/jbhi.2023.3275438.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/jbhi.2023.3275438
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access