RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2009

Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils

0 Datasets

0 Files

English
2009
Soil Biology and Biochemistry
Vol 41 (11)
DOI: 10.1016/j.soilbio.2009.08.013

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
M.T. Jan
Paula Roberts
S.K. Tonheim
+1 more

Abstract

Proteins represent the dominant input of organic N into most ecosystems and they also constitute the largest store of N in soil organic matter. The extracellular protease mediated breakdown of proteins to amino acids therefore represents a key step regulating N cycling in soil. In this study we investigated the influence of a range of environmental factors on the rate of protein mineralization in a grazed grassland and fallow agricultural soil. The protein turnover rates were directly compared to the rates of amino acid mineralization under the same conditions. Uniformly 14C-labelled soluble protein and amino acids were added to soil and the rate of 14CO2 evolution determined over 30 d. Our results indicate that the primary phase of protein mineralization was approximately 20 ± 3 fold slower that the rate of amino acid mineralization. The addition of large amounts of inorganic NO3 − and NH4 + to the soil did not repress the rate of protein mineralization suggesting that available N does not directly affect protease activity in the short term. Whilst protein mineralization was strongly temperature sensitive, the presence of plants and the addition of humic and tannic acids had relatively little influence on the rate of soluble protein degradation in this fertile grassland soil. Our results suggests that the extracellular protease mediated cleavage of proteins to amino acids rather than breakdown of amino acids to NH4 + represents the limiting step in soil N cycling.

How to cite this publication

M.T. Jan, Paula Roberts, S.K. Tonheim, Davey L Jones (2009). Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biology and Biochemistry, 41(11), pp. 2272-2282, DOI: 10.1016/j.soilbio.2009.08.013.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2009

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2009.08.013

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access