0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe scales of the arapaima (Arapaima gigas), one of the largest freshwater fish in the world, can serve as inspiration for the design of flexible dermal armor. Each scale is composed of two layers: a laminate composite of parallel collagen fibrils and a hard, highly mineralized surface layer. We review the structure of the arapaima scales and examine the functions of the different layers, focusing on the mechanical behavior, including tension and penetration of the scales, with and without the highly mineralized outer layer. We show that the fracture of the mineral and the stretching, rotation and delamination of collagen fibrils dissipate a significant amount of energy prior to catastrophic failure, providing high toughness and resistance to penetration by predator teeth. We show that the arapaima’s scale has evolved to minimize damage from penetration by predator teeth through a Bouligand-like arrangement of successive layers, each consisting of parallel collagen fibrils with different orientations. This inhibits crack propagation and restricts damage to an area adjoining the penetration. The flexibility of the lamellae is instrumental to the redistribution of the compressive stresses in the underlying tissue, decreasing the severity of the concentrated load produced by the action of a tooth. The experimental results, combined with small-angle X-ray scattering characterization and molecular dynamics simulations, provide a complete picture of the mechanisms of deformation, delamination and rotation of the lamellae during tensile extension of the scale.
Wen Yang, Vincent Sherman, Bernd Gludovatz, Mason R. Mackey, Elizabeth A. Zimmermann, Edwin H. Chang, Eric Schaible, Zhao Qin, Markus J. Buehler, Robert O. Ritchie, Marc A. Meyers (2014). Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomaterialia, 10(8), pp. 3599-3614, DOI: 10.1016/j.actbio.2014.04.009.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Acta Biomaterialia
DOI
10.1016/j.actbio.2014.04.009
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access