0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe ultimate limit of control of light at the nanoscale is the atomic scale. By stacking multiple layers of graphene on hexagonal boron nitride (h-BN), heterostructures with unique nanophotonic properties can be constructed, where the distance between plasmonic materials can be controlled with atom-scale precision. Here we show how an atomically thick tunable quantum tunnelling device can be used as a building block for quantum plasmonics. The device consists of two layers of graphene separated by 1 nm (three monolayers) of h-BN, and a bias voltage between the layers generates an electron gas coupled to a hole gas. We show that, even though its total charge is zero, this system is capable of supporting propagating graphene plasmons.
Achim Woessner, Abhishek Misra, Yang Cao, Iacopo Torre, Artem Mishchenko, Mark B. Lundeberg, Kenji Watanabe, Takashi Taniguchi, Marco Polini, Konstantin ‘kostya’ Novoselov, Frank H. L. Koppens (2017). Propagating Plasmons in a Charge-Neutral Quantum Tunneling Transistor. ACS Photonics, 4(12), pp. 3012-3017, DOI: 10.1021/acsphotonics.7b01020.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
ACS Photonics
DOI
10.1021/acsphotonics.7b01020
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access