RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Projected Increases in Precipitation Are Expected To Reduce Nitrogen Use Efficiency and Alter Optimal Fertilization Timings in Agriculture in the South East of England

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Projected Increases in Precipitation Are Expected To Reduce Nitrogen Use Efficiency and Alter Optimal Fertilization Timings in Agriculture in the South East of England

0 Datasets

0 Files

English
2022
ACS ES&T Engineering
Vol 2 (8)
DOI: 10.1021/acsestengg.1c00492

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Daniel McKay Fletcher
Siul Ruiz
Katherine A. Williams
+5 more

Abstract

Nitrogen fertilization is vital for productive agriculture and efficient land use. However, globally, approximately 50% of the nitrogen applied is lost to the environment, causing inefficiencies, pollution, and greenhouse gas emissions. Rainfall and its effect on soil moisture are the major components controlling nitrogen losses in agriculture. Thus, changing rainfall patterns could accelerate nitrogen inefficiencies. We used a mechanistic modeling platform to determine how precipitation-optimal nitrogen fertilization timings and resulting crop nitrogen uptake have changed historically (1950–2020) and how they are predicted to change under the RCP8.5 climate scenario (2021–2069) in the South East of England. We found that historically, neither precipitation-optimal fertilization timings nor resulting plant uptake changed significantly. However, there were large year-to-year variations in both. In the 2030s, where it is projected to get wetter, precipitation-optimal fertilization timings are predicted to be later in the season and the resulting plant uptake noticeably lower. After 2040, the precipitation-optimal uptakes are projected to increase with earlier precipitation-optimal timings closer to historical values, corresponding to the projected mean daily rainfall rates decreasing to the historical values in these growing seasons. It seems that the interannual variation in precipitation-optimal uptake is projected to increase. Ultimately, projected changes in precipitation patterns will affect nitrogen uptake and precipitation-optimal fertilization timings. We argue that the use of bespoke fertilization timings in each year can help recuperate the reduced N uptake due to changing precipitation.

How to cite this publication

Daniel McKay Fletcher, Siul Ruiz, Katherine A. Williams, Chiara Petroselli, Nancy C. Walker, David R. Chadwick, Davey L Jones, Tiina Roose (2022). Projected Increases in Precipitation Are Expected To Reduce Nitrogen Use Efficiency and Alter Optimal Fertilization Timings in Agriculture in the South East of England. ACS ES&T Engineering, 2(8), pp. 1414-1424, DOI: 10.1021/acsestengg.1c00492.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

ACS ES&T Engineering

DOI

10.1021/acsestengg.1c00492

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access